On the square root of quadratic matrices

نویسنده

  • A. Zardadi Department of Mathematics‎, ‎Payame Noor University (PNU)‎, ‎P.O‎. ‎Box 19395-4697‎, ‎Tehran‎, ‎Iran
چکیده مقاله:

Here we present a new approach to calculating the square root of a quadratic matrix. Actually, the purpose of this article is to show how the Cayley-Hamilton theorem may be used to determine an explicit formula for all the square roots of $2times 2$ matrices.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the spectra of some matrices derived from two quadratic matrices

begin{abstract} The relations between the spectrum of the matrix $Q+R$ and the spectra of the matrices $(gamma + delta)Q+(alpha + beta)R-QR-RQ$, $QR-RQ$, $alpha beta R-QRQ$, $alpha RQR-(QR)^{2}$, and $beta R-QR$ have been given on condition that the matrix $Q+R$ is diagonalizable, where $Q$, $R$ are ${alpha, beta}$-quadratic matrix and ${gamma, delta}$-quadratic matrix, respectively, of ord...

متن کامل

ON SELBERG-TYPE SQUARE MATRICES INTEGRALS

In this paper we consider Selberg-type square matrices integrals with focus on Kummer-beta types I & II integrals. For generality of the results for real normed division algebras, the generalized matrix variate Kummer-beta types I & II are defined under the abstract algebra. Then Selberg-type integrals are calculated under orthogonal transformations.

متن کامل

On Generating Functions Involving the Square Root of a Quadratic Polynomial

Many familiar counting sequences, such as the Catalan, Motzkin, Schröder and Delannoy numbers, have a generating function that is algebraic of degree 2. For example, the GF for the central Delannoy numbers is 1 √ 1−6x+x2 . Here we determine all generating functions of the form 1 √ 1+Ax+Bx that yield counting sequences and point out that they have a unified combinatorial interpretation in terms ...

متن کامل

Square Root on Chip

Three algorithm implementations for square root computation are considered in this paper. Newton-Raphson's, iterative, and binary search algorithm implementations are completely designed, verified and compared. The algorithms, entire system-on-chip realisations and their functioning are described.

متن کامل

On generalized quadratic matrices

Abstract Extending an approach considered by Radjawi and Rosenthal (2002), we investigate the set of square matrices whose square equals a linear combination of the matrix itself and an idempotent matrix. Special attention is paid to the Moore-Penrose and group inverse of matrices belonging to this set. References: Radjavi, H. and P. Rosenthal (2002). On commutators of idempotents. Linear and M...

متن کامل

On the semigroup of square matrices

We study the structure of nilpotent subsemigroups in the semigroup M(n,F) of all n × n matrices over a field, F, with respect to the operation of the usual matrix multiplication. We describe the maximal subsemigroups among the nilpotent subsemigroups of a fixed nilpotency degree and classify them up to isomorphism. We also describe isolated and completely isolated subsemigroups and conjugated e...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 08  شماره 03

صفحات  211- 214

تاریخ انتشار 2019-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023